

Code of Conduct
This external code of conduct for ACCESS-sponsored events represents ACCESS's commitment to providing

an inclusive and harassment-free environment in all interactions regardless of race, age, ethnicity, national

origin, language, gender, gender identity, sexual orientation, disability, physical appearance, political views,

military service, health status, or religion. The code of conduct below extends to all ACCESS-sponsored

events, services, and interactions.

Webpage: https://support.access-ci.org/code-conduct

How to Submit a Report

If you feel your safety is in jeopardy or the situation is an emergency, contact local law enforcement before

making a report to ACCESS. (In the U.S., dial 911.)

ACCESS is committed to promptly addressing any reported issues. If you have experienced or witnessed

behavior that violates the ACCESS Code of Conduct, please submit a ticket to ACCESS by using this online

form.

https://support.access-ci.org/code-conduct
https://support.access-ci.org/open-a-ticket?resource=issue_not_resource_related&is_your_issue_related_to_allocations_=No&category=0-Help&subject=Code%20of%20conduct%20report
https://support.access-ci.org/open-a-ticket?resource=issue_not_resource_related&is_your_issue_related_to_allocations_=No&category=0-Help&subject=Code%20of%20conduct%20report

Acknowledgement

“This material is based upon work supported by the National Science Foundation under Grant No. 2005632.”

Disclaimer: “Any opinions, findings, and conclusions or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views of the National Science Foundation.”

Full Agenda

▪ Anvil system architecture including node types, storage, interconnects,
and networking.

▪ Getting started with accounts and allocations

▪ Compilation and programing environment on Anvil

▪ Running Jobs on Anvil

▪ Data management and transfer on Anvil

▪ Q&A

Agenda

1. Anvil overview

▪ Introduction to Anvil

▪ Hardware

▪ Anvil group and consulting

About Anvil

▪ Category I: A national composable advanced

computational resource for the future of science

and engineering

▪ By the Purdue research computing team. Full

access started February, 2022

▪ NSF award #2005632; 5 years of operations;

allocated via NSF ACCESS

▪ Multi-tier storage

(including object storage)

▪ 10 PB of parallel

filesystem, and 3 PB of

all-flash storage

▪ Globus data transfer

▪ 8 large memory &

storage nodes

▪ Kubernetes – Rancher

for DevOps

▪ 16 nodes with 4 NVIDIA

A100 GPUs each

▪ 32 large memory nodes

with 1 TB of RAM

▪ 1000 compute nodes

▪ 128 core AMD 3rd Gen

EPYC 7763 processors

▪ 5.3 PF peak

performance

High-

performance

GPU/Large-

memory

Storage
Composable

subsystem

System Resources

Service & Support

Quick

turnaround

via ACCESS

support

tickets

Support

team

Advanced

user support

[support.access-

ci.org/user/login?d

estination=/open-

a-ticket]

[comprising

domain experts

from multiple

disciplines]

[data science

consulting, HPC

performance

optimization,

science gateway

development]

Multimodal

Training

Delivery

[live lessons,

online tutorials,

video lessons]

[portal.xsede.org/help-desk]
https://support.access-ci.org/user/login?destination=/open-a-ticket
https://support.access-ci.org/user/login?destination=/open-a-ticket
https://support.access-ci.org/user/login?destination=/open-a-ticket
https://support.access-ci.org/user/login?destination=/open-a-ticket
[portal.xsede.org/help-desk]

Agenda

2. Getting started

▪ Get anvil account and allocation

▪ Logging in

▪ Check account usage

Agenda

2. Getting started

▪ Get anvil account and allocation

▪ Logging in

▪ Check account usage

Obtaining an Account

As an ACCESS computing resource, Anvil is accessible to ACCESS users who are given an allocation

on the system. To obtain an account, users may submit a proposal through:

ACCESS Allocation Request System: https://allocations.access-ci.org/

Sign up for an ACCESS account (if you don’t have one already) at https://allocations.access-ci.org

Prepare an allocation request with details of your proposed computational workflows (science,

software needs), resource requirements, and a short CV. See the individual “Preparing Your …

Request” pages for details on what documents are required:

https://allocations.access-ci.org/prepare-requests-overview.

https://allocations.access-ci.org/
https://allocations.access-ci.org/
https://allocations.access-ci.org/
https://allocations.access-ci.org/prepare-requests-overview

Obtaining an Allocation

Allocation Credit Threshold

Explore ACCESS 400,000

Discover ACCESS 1,500,000

Accelerate ACCESS 3,000,000

Maximize ACCESS Not awarded in credits.

How do I get onto Anvil through ACCESS?

https://allocations.access-ci.org/preparing-your-explore-access-request
https://allocations.access-ci.org/preparing-your-discover-access-request
https://allocations.access-ci.org/preparing-your-accelerate-access-request
https://allocations.access-ci.org/preparing-your-maximize-access-request
https://www.rcac.purdue.edu/knowledge/anvil/access/anvil_through_access

Obtaining an Allocation

When your request is approved, you only get ACCESS credits awarded. You still need to go
through the step of exchanging these credits for time on Anvil.

You need not use up all your credits and may also use part of your credits for time on other
ACCESS resources.

Exchange calculator (https://allocations.access-ci.org/exchange_calculator)

You will also need to go to the allocations page and add any users you would like to have access
to these resources.

Note that they will need to sign up for ACCESS accounts as well before you can add them.

For other questions you may have, take a look at the FAQs on the ACCESS page here:

(https://allocations.access-ci.org/ramps-policies-faqs)

https://allocations.access-ci.org/exchange_calculator
https://allocations.access-ci.org/ramps-policies-faqs

Obtaining an Allocation

When your ACCESS allocation is approved, you will receive an email from ACCESS.

After you transfer your credit to Anvil, it takes a bit of time for ACCESS to send the
information to Anvil.

Agenda

2. Getting started

▪ Get anvil account and allocation

▪ Logging in

▪ Check account usage

localhost$ ssh my-x-anvil-username anvil.rcac.purdue.edu

Anvil accepts standard SSH connections with public keys-based authentication to anvil.rcac.purdue.edu using

your Anvil username:

Logging in via SSO Hub

Please note:

• Your Anvil username is not the same as your ACCESS portal username. Anvil usernames look like x-

ACCESSusername or similar, starting with an x-.

• Password-based authentication is not supported on Anvil (in favor of SSH keys). There is NO "Anvil password",

and your ACCESS password will not be accepted by Anvil's SSH either.

Anvil accepts standard SSH connections with public keys-based authentication to anvil.rcac.purdue.edu using your

Anvil username:

Please see Appendix or Anvil user guide (www.rcac.purdue.edu/knowledge/anvil/access/login/sshkeys) for more detail

about SSH keys.

public key authorized keylocal machine Anvil

Logging in via SSH

localhost$ ssh -l my-x-anvil-username anvil.rcac.purdue.edu

Your Anvil username is not the same as your ACCESS Portal username.

Anvil usernames look like x-ACCESSusername or similar, starting with an x-.

Password-based authentication is not supported on Anvil (in favor of SSH keys). There is no "Anvil password", and your

ACCESS User Portal password will not be accepted by Anvil's SSH either.

https://www.rcac.purdue.edu/knowledge/anvil/access/login/sshkeys

Open OnDemand

Open OnDemand allows one to interact with HPC resources through a web browser and easily manage files, submit jobs, and

interact with graphical applications directly in a browser, all with no software to install.

Navigate to https://ondemand.anvil.rcac.purdue.edu

Log in using your ACCESS portal username and password

More training section about Open OnDemand will be given by Anvil team in the future.

Agenda

2. Getting started

▪ Get anvil account and allocation

▪ Logging in

▪ Check account usage

Check Allocation Usage
To keep track of the usage of the allocation by your project team, you can use mybalance:

[x-anvilusername@login01:~]$ mybalance

Allocation Type SU Limit SU Usage SU Usage SU Balance

Account (account) (user)

=============== ======= ======== ========= ========= ==========

xxxxxx-cpu CPU 1000.0 95.7 3.0 904.3

xxxxxx-gpu GPU 1000.0 43.5 1.5 956.5

You can also check the allocation usage through ACCESS User Portal:

https://allocations.access-ci.org/allocations/summary

You should see at least one allocation.

CPU and GPU nodes use are count separately, so there are using different allocation accounts.

https://portal.xsede.org/allocations/managing
https://allocations.access-ci.org/allocations/summary

Check Allocation Usage

Agenda

3. Compilation and programing environment

▪ Module system

▪ Provide software and software installation policy

▪ Compiling source code (examples and explanation)

Agenda

3. Compilation and programing environment

▪ Module system

▪ Provide software and software installation policy

▪ Compiling source code (examples and explanation)

▪ Module commands allow you to add applications and libraries to your environment.

▪ This allows us to simultaneously and safely provide several versions of the same software.

▪ Anvil team makes recommendations for both CPU and GPU stack regarding the CUDA version, compiler, math

library, and MPI library. If you have no specific requirements, you can simply load the recommended set by:

Modules

$ module load modtree/cpu # for CPU

$ module load modtree/gpu # for GPU

Modules

▪ Lmod is a hierarchical module system, a module can only be loaded after loading the necessary compilers and MPI

libraries that it depends on. A list of all available modules can be found by:

▪ The module spider command can also be used to search for specific module names.

$ module spider

$ module spider intel # all modules with names containing 'intel'

▪ To unload a module

$ module unload mymodulename

Modules

▪ To see all available modules that are compatible with current loaded modules

▪ To display information about a specified module, including environment changes, dependencies, software

version and path.

▪ To unload all loaded modules and reset everything to original state.

▪ Show all modules currently loaded in my environment:

$ module show mymodulename

$ module avail

$ module purge

$ module list

Example: Modules

$ module list # Show all modules currently loaded in my environment

Currently Loaded Modules:

1) gmp/6.2.1 2) mpfr/4.0.2 3) mpc/1.1.0 4) zlib/1.2.11 5) gcc/11.2.0 6) libfabric/1.12.0 7) numactl/2.0.14 8) openmpi/4.0.6 9)

modtree/cpu

$ module purge # To unload all loaded modules and reset everything to original state

$ module list

No modules loaded

This default environment can be loaded by $ module load modtree/cpu

Example: Modules

$ module load modtree/cpu # To load the default CPU environment recommended by the Anvil team

$ module list

Currently Loaded Modules:

1) gmp/6.2.1 2) mpfr/4.0.2 3) mpc/1.1.0 4) zlib/1.2.11 5) gcc/11.2.0 6) libfabric/1.12.0 7) numactl/2.0.14 8) openmpi/4.0.6 9)

modtree/cpu

$ module unload openmpi/4.0.6 # To unload the openmpi/4.0.6 module

$ module list

Currently Loaded Modules:

1) gmp/6.2.1 2) mpfr/4.0.2 3) mpc/1.1.0 4) zlib/1.2.11 5) gcc/11.2.0 6) modtree/cpu

When unload openmpi module, two more dependent modules are removed.

$ module spider openmpi # Report all the versions for the modules that match “openmpi ”

--

openmpi:

--

Versions:

openmpi/3.1.6

openmpi/4.0.6 …

$ module spider openmpi/4.0.6 # Report detailed information on a particular module version openmpi/4.0.6

--

openmpi: openmpi/4.0.6

You will need to load all module(s) on any one of the lines below before the "openmpi/4.0.6" module is available to load.

aocc/3.1.0 gcc/10.2.0 gcc/11.2.0 gcc/8.4.1 intel/19.0.5.281

Help:

An open source Message Passing Interface implementation. The Open MPI Project is an open source Message Passing

Interface implementation that

is developed and maintained by a consortium of academic, research, and industry partners. Open MPI is therefore able to

combine the expertise …

Example: Modules

Agenda

3. Compilation and programing environment

▪ Module system

▪ Provide software and software installation policy

▪ Compiling source code (examples and explanation)

• General purpose mathematics and statistics modeling
tools, visualization tools

• Broad application base with installs and modules from
various science and engineering domains

Scientific Applications

• Various popular programming languages, GNU, Intel
and AOCC compilers, message passing libraries

• Workflow, data management and analysis tools

• Debugging and profiling tools

Programming Libraries &
Compilers

• Support for Singularity containerization and execution
(e.g. NGC, BioContainers)

• Efficient access to various databases (e.g., NCBI)
Containers and Datasets

Provide Software

Provide Software: https://purduercac-applications.readthedocs.io/en/latest/

Need additional software? Please see the Software Installation Request Policy.

https://purduercac-applications.readthedocs.io/en/latest/
https://www.rcac.purdue.edu/knowledge/anvil/policies/software_installation_request_policy

Agenda

3. Compilation and programing environment

▪ Module system

▪ Provide software and software installation policy

▪ Compiling source code (examples and explanation)

CPU nodes

Compilers: GNU, Intel, AOCC (AMD)

MPI implementations: OpenMPI, Intel MPI (IMPI)
and MVAPICH2

All compilers installed on Anvil include OpenMP
functionality for C, C++, and Fortran

Supported Compilers

GPU nodes

▪ The GPU nodes on Anvil support CUDA and
OpenCL

▪ OpenACC functionality are support by:

➢PGI compilers through the nvhpc modules

➢GNU compiler through gcc/11.2.0-openacc
module

▪ Some GPU codes may require compiled on the
GPU nodes through an interactive session.

Example: Compiling Serial C++ Code

Source code: serial_hello.cpp Machine code: serial

$ module list

Currently Loaded Modules:

1) gmp/6.2.1 2) mpfr/4.0.2 3) mpc/1.1.0 4) zlib/1.2.11 5) gcc/11.2.0 6) libfabric/1.12.0 7) numactl/2.0.14 8) openmpi/4.0.6 9)

modtree/cpu

$ g++ serial_hello.cpp -o serial # Complie the c++ code with GNU compiler

$ ls

serial_hello.cpp serial # Executable files generated

$./serial

Runhost:a600.anvil.rcac.purdue.edu hello, world

Compiling Serial Programs

*Intel compiler does not recognize the suffix ".f95". You may use ".f90" to stand for any Fortran
code regardless of version as it is a free-formatted form

The following table illustrates how to compile your serial program:

Language Intel Compiler GNU Compiler AOCC Compiler

Fortran 77 $ ifort myprogram.f -o myprogram $ gfortran myprogram.f -o myprogram $ flang program.f -o program

Fortran 90 $ ifort myprogram.f90 -o myprogram $ gfortran myprogram.f90 -o myprogram $ flang program.f90 -o program

Fortran 95 $ ifort myprogram.f90 -o myprogram $ gfortran myprogram.f95 -o myprogram $ flang program.f90 -o program

C $ icc myprogram.c -o myprogram $ gcc myprogram.c -o myprogram $ clang program.c -o program

C++ $ icc myprogram.cpp -o myprogram $ g++ myprogram.cpp -o myprogram
$ clang++ program.C -o

program

Compiling MPI Programs

*Intel compiler does not recognize the suffix ".f95". You may use ".f90" to stand for any Fortran
code regardless of version as it is a free-formatted form

The following table illustrates how to compile your MPI program. Any compiler flags accepted by Intel ifort/icc

compilers are compatible with their respective MPI compiler.

Language Intel Compiler with Intel MPI (IMPI) Intel/GNU/AOCC Compiler with OpenMPI/MVAPICH2

Fortran 77 $ mpiifort myprogram.f -o myprogram $ mpif77 myprogram.f -o myprogram

Fortran 90 $ mpiifort myprogram.f90 -o myprogram $ mpif90 myprogram.f90 -o myprogram

Fortran 95 $ mpiifort myprogram.f90 -o myprogram $ mpif90 myprogram.f90 -o myprogram

C $ mpiicc myprogram.c -o myprogram $ mpicc myprogram.c -o myprogram

C++ $ mpiicc myprogram.C -o myprogram $ mpicxx myprogram.C -o myprogram

Compiling OpenMP Programs

*Intel compiler does not recognize the suffix ".f95". You may use ".f90" to stand for any Fortran
code regardless of version as it is a free-formatted form

The following table illustrates how to compile your shared-memory program. Any compiler flags accepted by Intel

ifort/icc compilers are compatible with OpenMP.

Language Intel Compiler GNU Compiler AOCC Compiler

Fortran 77
$ ifort -openmp myprogram.f -o

myprogram

$ gfortran -fopenmp myprogram.f -o

myprogram

$ flang -fopenmp myprogram.f -o

myprogram

Fortran 90
$ ifort -openmp myprogram.f90 -o

myprogram

$ gfortran -fopenmp myprogram.f90 -o

myprogram

$ flang -fopenmp myprogram.f90 -o

myprogram

Fortran 95
$ ifort -openmp myprogram.f90 -o

myprogram

$ gfortran -fopenmp myprogram.f90 -o

myprogram

$ flang -fopenmp myprogram.f90 -o

myprogram

C
$ icc -openmp myprogramram.c -o

myprogram

$ gcc -fopenmp myprogram.c -o

myprogram

$ clang -fopenmp myprogram.c -o

myprogram

C++
$ icc -openmp myprogram.cpp -o

myprogram

$ g++ -fopenmp myprogram.cpp -o

myprogram

$ clang++ -fopenmp myprogram.cpp -o

myprogram

Compiling Hybrid Programs

*Intel compiler does not recognize the suffix ".f95". You may use ".f90" to stand for any Fortran
code regardless of version as it is a free-formatted form

The following tables illustrate how to compile your hybrid (MPI/OpenMP) program. Any compiler flags accepted

by Intel ifort/icc compilers are compatible with their respective MPI compiler.

Language Intel Compiler with Intel MPI(IMPI) Intel/GNU/AOCC Compiler with OpenMPI/MVAPICH2

Fortran 77 $ mpiifort -qopenmp myprogram.f -o myprogram $ mpif77 -fopenmp myprogram.f -o myprogram

Fortran 90 $ mpiifort -qopenmp myprogram.f90 -o myprogram $ mpif90 -fopenmp myprogram.f90 -o myprogram

Fortran 95 $ mpiifort -qopenmp myprogram.f90 -o myprogram $ mpif90 -fopenmp myprogram.f90 -o myprogram

C $ mpiicc -qopenmp myprogram.c -o myprogram $ mpicc -fopenmp myprogram.c -o myprogram

C++ $ mpiicpc -qopenmp myprogram.C -o myprogram $ mpicxx -fopenmp myprogram.C -o myprogram

Compiling NVIDIA GPU Programs

Both login and GPU-enabled compute nodes have the CUDA tools and libraries for compiling CUDA programs.

But if code require CUDA drive, you need to submit an interactive job to get to the GPU nodes. The gpu-debug queue

is ideal for this case.

$ module load modtree/gpu

$ nvcc gpu_hello.cu -o gpu_hello

./gpu_hello

No GPU specified, using first GPUhello, world

Agenda

4. Running jobs

▪ Accessing to compute node

▪ Interactive jobs

▪ Job accounting

▪ Available queues

▪ Batch jobs & Examples

Agenda

4. Running jobs

▪ Accessing to compute node

▪ Interactive jobs

▪ Batch jobs & Examples

▪ Job accounting

▪ Available queues

job

Compute Nodes

e.g. a751.anvil

queue

login

Login Nodes

e.g. login05.anvil

File system ($HOME, $SCRATCH, $PROJECT)

Internet

LOGIN NODE VS COMPUTE NODE

Running Jobs: The goal is getting to the compute nodes

Do not do science

on the login node!

Agenda

4. Running jobs

▪ Access to compute node

▪ Interactive jobs

▪ Batch jobs & Examples

▪ Job Accounting

▪ Available queues

Interactive Computing

$ sinteractive -N 2 -n 256 -A myallocation -t 00:30:00

salloc: Granted job allocation 198543

salloc: Waiting for resource configuration

salloc: Nodes a[478-479] are ready for job

Interactive Job

This example asked for 2 nodes.

128 cores on each node.

The time limit is 30 mins.

▪ You can use the sinteractive command to run your job in an interactive session.

▪ sinteractive accepts most of the same resource requests as sbatch

▪ To quit your interactive job: exit or Ctrl-D

Interactive Computing

Job manager and

composer

Interactive

programming

Interactive scientific

applications

Remote Desktop

Gateway

Quicker
develop / test /
debug cycle

Run GUI apps as
job: Matlab, Fluent,
Windows VM

Low Barrier &

Familiar Access

to Compute

Agenda

4. Running jobs

▪ Access to compute node

▪ Interactive jobs

▪ Batch jobs & Examples

▪ Job Accounting

▪ Available queues

Batch Script example: Serial Job in Shared Queue
#!/bin/bash

FILENAME: myjobsubmissionfile

#SBATCH -A myallocation # Allocation name

#SBATCH --nodes=1 # Total # of nodes (must be 1 for serial job)

#SBATCH --ntasks=1 # Total # of tasks (should be 1 for serial job)

#SBATCH --time=1:30:00 # Total run time limit (hh:mm:ss)

#SBATCH -J myjobname # Job name

#SBATCH -o myjob.o%j # Name of stdout output file

#SBATCH -e myjob.e%j # Name of stderr error file

#SBATCH -p shared # Queue (partition) name

#SBATCH --mail-user=useremailaddress

Manage processing environment, load compilers and applications.

module purge

module load compilername

module load applicationname

module list

Launch serial code

./myexecutablefiles

Common Slurm Commands

▪ Check job status

$ squeue -u myusername (or squeue --me)

JOBID PARTITION NAME USER ST TIME NODES

188 wholenode job1 myusername R 0:14 2

189 wholenode job2 myusername PD 0:00 1

R -- running

PD -- pending

▪ Submit jobs

$ sbatch mysubmissionfile

Submitted batch job 188

▪ Kill a job

$ scancel myjobid

Common Slurm Commands
▪ Check queued or running job information

$ scontrol show job 189

JobId=189 JobName=myjobname

UserId=myusername GroupId=mygroup MCS_label=N/A

Priority=103076 Nice=0 Account=myacct QOS=normal

JobState=RUNNING Reason=None Dependency=(null)

Requeue=1 Restarts=0 BatchFlag=0 Reboot=0 ExitCode=0:0

RunTime=00:01:28 TimeLimit=00:30:00 TimeMin=N/A

SubmitTime=2021-10-04T14:59:52 EligibleTime=2021-10-04T14:59:52

AccrueTime=Unknown

StartTime=2021-10-04T14:59:52 EndTime=2021-10-04T15:29:52 Deadline=N/A

…

JobState: if the job is Pending, Running, Completed, or Held.

RunTime & TimeLimit: how long the job has run and

maximum run time.

SubmitTime: when the job was submitted to the cluster.

WorkDir: the job's working directory.

StdOut & Stderr: locations of stdout and stderr of the job.

Reason: why a PENDING job isn't running.

Common Slurm Commands
▪ Check historic (completed) job information

$ jobinfo 189

Name : interactive

User : hong400

Account : rcac

Partition : wholenode

Nodes : a010

Cores : 1

GPUs : 0

State : TIMEOUT

ExitCode : 0:0

Submit : 2021-10-04T14:59:52

Start : 2021-10-04T14:59:52

End : 2021-10-04T15:30:20

Waited : 00:00:00

…

1. cd sbatch-test # go to the sbatch-test folder

2. ls

hello.py myjobsubmitscript

3. sbatch myjobsubmitscript # submit a sbatch job

Submitted batch job XXXXXX

4. squeue -u myusername or squeue –me # check job status under myusername

Example: Submit a batch job

5. scontrol show job XXXXXX # check queued or running job information with my jobID

6. scancel XXXXXX # kill the job with my jobID

7. jobinfo XXXXXX # check historic (completed) job information with my jobID

8. vi myjob.oXXXXXX # check job output file

9. vi myjob.eXXXXXX # check job error file

Example: Submit a batch job

MPI Job in Wholenode Queue
#!/bin/bash

FILENAME: myjobsubmissionfile

#SBATCH -A myallocation # Allocation name

#SBATCH --nodes=2 # Total # of nodes

#SBATCH --ntasks=256 # Total # of tasks

#SBATCH --time=1:30:00 # Total run time limit (hh:mm:ss)

#SBATCH -p wholenode # Queue (partition) name

Manage processing environment, load compilers and applications.

module purge

module load compilername

module load mpilibrary

module load applicationname

module list

Launch MPI code

mpirun -np $SLURM_NTASKS myexecutablefiles

#!/bin/bash

FILENAME: myjobsubmissionfile

#SBATCH -A myallocation # Allocation name

#SBATCH --nodes=1 # Total # of nodes (must be 1 for OpenMP job)

#SBATCH --ntasks=1 # Total # of tasks

#SBATCH --cpus-per-task=128 # cpu-cores per task (default value is 1, >1 for multi-threaded tasks)

#SBATCH --time=1:30:00 # Total run time limit (hh:mm:ss)

#SBATCH -p wholenode # Queue (partition) name

Manage processing environment, load compilers and applications.

module purge

module load compilername

module load applicationname

module list

Set thread count (default value is 1).

export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK

Launch OpenMP code

./myexecutablefiles

OpenMP Job in Wholenode Queue

When running OpenMP programs, all threads must

be on the same compute node to take advantage of

shared memory. The threads cannot communicate

between nodes.

Hybrid Job in Wholenode Queue
#!/bin/bash

FILENAME: myjobsubmissionfile

#SBATCH -A myallocation # Allocation name

#SBATCH --nodes=2 # Total # of nodes

#SBATCH --ntasks-per-node=2 # Total # of MPI tasks per node

#SBATCH --cpus-per-task=64 # cpu-cores per task (default value is 1, >1 for multi-threaded tasks)

#SBATCH --time=1:30:00 # Total run time limit (hh:mm:ss)

#SBATCH -p wholenode # Queue (partition) name

Manage processing environment, load compilers and applications.

module purge

module load compilername

module load mpilibrary

module load applicationname

module list

Set thread count (default value is 1).

export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK

Launch MPI code

mpirun -np $SLURM_NTASKS myexecutablefiles

This example asks for 4 MPI tasks

2 MPI tasks per node

Each with 64 OpenMP threads

Total of 256 CPU-cores

GPU job in GPU queue
#!/bin/bash

FILENAME: myjobsubmissionfile

#SBATCH -A myGPUallocation # Allocation name for GPU

#SBATCH --nodes=1 # Total # of nodes (must be 1 for serial job)

#SBATCH --ntasks=1 # Total # of tasks

#SBATCH --gpus-per-node=1 # Number of GPUs per node

#SBATCH --time=1:30:00 # Total run time limit (hh:mm:ss)

#SBATCH -p gpu # Queue (partition) name

#SBATCH --mail-user=useremailaddress

#SBATCH --mail-type=all # Send email to above address at begin and end of job

Manage processing environment, load compilers and applications.

module purge

module load modtree/gpu

module load applicationname

module list

Launch GPU code

./myexecutablefiles

You can use sfeatures command to see the

detailed hardware overview.

Make sure to use gpus-per-node=1.

Otherwise, your job may not run properly.

When running on multiple GPUs with MPI,

you need to ensure one MPI rank per GPU.

NGC GPU Container Job in GPU Queue

$ module load modtree/gpu

$ module load ngc

$ module avail

--- /opt/spack/ngc --

autodock/2020.06 namd/2.13-multinode pytorch/20.11-py3 rapidsai/0.17 tensorflow/20.06-tf2-py3

gamess/17.09-r2-libcchem namd/2.13-singlenode (D) pytorch/20.12-py3 rapidsai/21.06 tensorflow/20.11-tf1-py3

gromacs/2018.2 namd/3.0-alpha3-singlenode pytorch/21.06-py3 rapidsai/21.10 (D) tensorflow/20.11-tf2-py3

gromacs/2020.2 nvhpc/20.7 pytorch/21.09-py3 (D) relion/2.1.b1 tensorflow/20.12-tf1-py3

gromacs/2021 nvhpc/20.9 qmcpack/v3.5.0 relion/3.1.0 tensorflow/20.12-tf2-py3

gromacs/2021.3 (D) nvhpc/20.11 quantum_espresso/v6.6a1 relion/3.1.2 tensorflow/21.06-tf1-py3

julia/v1.5.0 nvhpc/21.5 quantum_espresso/v6.7 (D) relion/3.1.3 (D) tensorflow/21.06-tf2-py3

julia/v2.4.2 nvhpc/21.9 (D) rapidsai/0.12 tensorflow/20.02-tf1-py3 tensorflow/21.09-tf1-py3

lammps/10Feb2021 paraview/5.9.0 rapidsai/0.13 tensorflow/20.02-tf2-py3 tensorflow/21.09-tf2-py3 (D)

lammps/15Jun2020 pytorch/20.02-py3 rapidsai/0.14 tensorflow/20.03-tf1-py3 torchani/2021.04

lammps/24Oct2018 pytorch/20.03-py3 rapidsai/0.15 tensorflow/20.03-tf2-py3

lammps/29Oct2020 pytorch/20.06-py3 rapidsai/0.16 tensorflow/20.06-tf1-py3

On Anvil, type the command below to see the lists of NGC containers we deployed:

What is NGC?

▪ Nvidia GPU Cloud (NGC) is a GPU-accelerated cloud platform optimized for deep learning and scientific computing.

▪ Anvil team provides pre-downloaded NGC containers as convenient modules, so that you can use NGC containers as non-
containerized versions of each application. More information can be found at Anvil NGC containers:
https://www.rcac.purdue.edu/knowledge/anvil/run/examples/slurm/ngc

https://www.rcac.purdue.edu/knowledge/anvil/run/examples/slurm/ngc

NGC GPU Container Job in GPU Queue
#!/bin/bash

FILENAME: myjobsubmissionfile

#SBATCH -A myGPUallocation # Allocation name for GPU

#SBATCH --nodes=1 # Total # of nodes (must be 1 for serial job)

#SBATCH --ntasks=1 # Total # of tasks

#SBATCH --gpus-per-node=1 # Number of GPUs per node

#SBATCH --time=1:30:00 # Total run time limit (hh:mm:ss)

#SBATCH -p gpu # Queue (partition) name

Manage processing environment, load compilers and applications.

module purge

module load modtree/gpu

module load ngc

module load applicationname

module list

Launch GPU code

./myexecutablefiles

When running on multiple GPUs with MPI,

you need to ensure one MPI rank per GPU.

Agenda

4. Running jobs

▪ Access to compute node

▪ Interactive jobs

▪ Batch jobs & Examples

▪ Job Accounting

▪ Available queues

Job Accounting
▪ For CPU jobs, the charge unit is Service Unit (SU), i.e. 1 CPU using  ~2G memory for 1 hour, based on the actual

resources tied up by your job.

Example: a 4 cores + 2 hours job:

▪ Submitted to shared queues job

▪ Submitted to node-exclusive job, all 128 cores will be charged, even if only 4 cores are used, charge = 128

cores x 2 hours = 256 SU

Jobs submitted to the large memory nodes will be charged 4 SU per core (4x wholenode charge).

▪ For GPU jobs, 1 SU is 1 GPU using  ~64G memory for 1 hour. 4 GPU on a node. All GPU nodes are shared.

▪ Filesystem storage is not charged.

if mem  ~8G, charge = 4 cores x 2 hours = 8 SU

if mem = 9G, charge = 5 cores x 2 hours = 10 SU

Agenda

4. Running jobs

▪ Access to compute node

▪ Interactive jobs

▪ Batch jobs & Examples

▪ Job Accounting

▪ Available queues

Slurm Partitions (Queues)

Anvil Production Queues

Queue

Name
Node Type

Max Nodes

per Job

Max Cores

per Job

Max

Duration

Max running

Jobs in Queue

Max running +

submitted Jobs

in Queue

Charging

factor

debug regular 2 nodes 256 cores 2 hrs 1 2 1

gpu-debug gpu 1 node 2 gpus 0.5 hrs 1 2 1

wholenode regular 16 nodes 2,048 cores 96 hrs 64 128 1

wide regular 56 nodes 7,168 cores 12 hrs 5 10 1

shared regular 1 node 128 cores 96 hrs 6400 cores 1

highmem
large-

memory
1 node 128 cores 48 hrs 2 4 4

gpu gpu 48 hrs 8 gpus 1

* For gpu queue: max of 12 GPU per job and max of 32 GPU in use by a single group.

DEFAULT

Slurm Partitions (Queues)

* wholenode is the default partition.

standard partition will be removed soon.

$ showpartitions

Partition statistics for cluster anvil at Tue Jun 21 11:02:14 EDT 2022

Partition #Nodes #CPU_cores Cores_pending Job_Nodes MaxJobTime Cores Mem/Node

Name State Total Idle Total Idle Resorc Other Min Max Day-hr:mn /node (GB)

wholenode:* up 750 637 96000 81536 0 897 1 infin infinite 128 257

standard up 750 637 96000 81536 0 20676 1 infin infinite 128 257

shared up 250 245 32000 31551 0 0 1 infin infinite 128 257

wide up 750 637 96000 81536 0 0 1 infin infinite 128 257

highmem up 32 32 4096 4096 0 0 1 infin infinite 128 1031

debug up 17 17 2176 2176 0 0 1 infin infinite 128 257

gpu up 16 8 2048 1911 0 96 1 infin infinite 128 515

gpu-debug up 16 8 2048 1911 0 0 1 infin infinite 128 515

Agenda

5. Data management and transfer

▪ File system

▪ Scp, Rsync, SFTP, Globus

▪ Lost file recovery

Agenda

5. Data management and transfer

▪ File system

▪ Scp, Rsync, SFTP, Globus

▪ Lost file recovery

File Systems

* Full schedule keeps nightly snapshots for 7 days, weekly snapshots for 3 weeks, and monthly snapshots for 2 months.

Anvil File Systems

File System Mount Point Quota Snapshots Purpose Purge policy

Anvil ZFS /home 25 GB
Full

schedule*

Home directories: area for storing personal

software, scripts, compiling, editing, etc.
Not purged

Anvil ZFS /apps N/A Weekly* Applications

Anvil GPFS /anvil N/A No

Anvil GPFS /anvil/scratch 100 TB No
User scratch: area for job I/O activity, temporary

storage

Files older than 30-day (access time) will be

purged

Anvil GPFS /anvil/projects 5 TB
Full

schedule*

Per allocation: area for shared data in a project,

common datasets and software installation

Not purged while allocation is active.

Removed 90 days after allocation expiration

Anvil GPFS /anvil/datasets N/A Weekly* Common data sets (not allocated to users)

Versity N/A (Globus) 20 TB No Tape storage per allocation

$HOME

$SCRATCH

$PROJECT or $WORK

File Systems

x-anvilusername@login03.anvil:[~] $ myquota

Type Location Size Limit Use Files Limit Use

==

home x-anvilusername 261.5MB 25.0GB 1% - - -

scratch anvil 6.3GB 100.0TB 0.01% 3k 1,048k 0.36%

projects accountname1 37.2GB 5.0TB 0.73% 403k 1,048k 39%

projects accountname2 135.8GB 5.0TB 3% 20k 1,048k 2%

To check the quota of different file systems, type myquota at the command line.

Agenda

5. Data management and transfer

▪ File system

▪ Scp, Rsync, SFTP, Globus

▪ Lost file recovery

Transferring Files

Users can transfer files between Anvil and Linux-based systems or Mac or windows terminal using either scp or rsync or

SFTP.

localhost> scp x-anvilusername@anvil.rcac.purdue.edu:/home/x-anvilusername/test.txt .

Warning: Permanently added the xxxxxxx host key for IP address 'xxx.xxx.xxx.xxx' to the list of known hosts.

test.txt 100% 0 0.0KB/s 00:00

▪ SCP (Secure CoPy) is a simple way of transferring files between two machines that use the SSH protocol.

NOTE: SSH Keys is required for SCP.

Following is an example of transferring a test.txt file from Anvil home directory to local machine, make sure to use your

anvil user name x-anvilusername:

Transferring Files

Users can transfer files between Anvil and Linux-based systems or Mac or windows terminal using either scp or rsync or

SFTP.

▪ Rsync, or Remote Sync lets you transfer files and directories to local and remote destinations. It allows to copy only

the changes from the source and offers customization, use for mirroring, performing backups, or migrating data

between different filesystems.

NOTE: SSH Keys is required for Rsync. Also make sure to use your anvil user name x-anvilusername:

Transferring Files
▪ SFTP (Secure File Transfer Protocol) is available as graphical file transfer programs and as a command-line program.

SFTP has more features than SCP and allows for other operations on remote files, remote directory listing, and

resuming interrupted transfers.

▪ More details can be found at Anvil File Transfer-SFTP: www.rcac.purdue.edu/knowledge/anvil/storage/transfer/sftp

Cyberduck for Mac OS X MobaXterm for Microsoft Windows

https://www.rcac.purdue.edu/knowledge/anvil/storage/transfer/sftp
https://cyberduck.io/
https://mobaxterm.mobatek.net/download.html

Transferring Files
▪ Globus is also a powerful and easy to use file transfer. It works between any XSEDE and non-XSEDE sites running

Globus, and it connects any of these research systems to personal systems.

You may use Globus to connect to your home, scratch, and project storage directories on Anvil. Since Globus is

web-based, it works on any operating system connected to the internet.

More details can be found at XSEDE Data Transfer & Management: https://portal.xsede.org/data-management

https://portal.xsede.org/data-management

Agenda

5. Data management and transfer

▪ File system

▪ Scp, Rsync, SFTP, Globus

▪ Lost file recovery

Lost File Recovery

▪ Your $HOME and $PROJECT directories on Anvil are protected. A series of snapshots are taken every night after

midnight. Each snapshot provides the state of your files at the time.

▪ These snapshots are kept for a limited time at various intervals. Please refer to Anvil File Systems:

www.rcac.purdue.edu/knowledge/anvil/storage/filesystems for more detail.

▪ Only files saved during an overnight snapshot are recoverable. If you lose a file the same day you created it, the file

is not recoverable.

▪ Snapshots are not a substitute for regular backups. For additional security, you might consider off-site back up

important data (e.g. use Globus to transfer to your institution, etc)

https://www.rcac.purdue.edu/knowledge/anvil/storage/filesystems

Lost File Recovery

▪ If you know when you lost the file, you can use the flost command.

▪ The default location flost looks at is $HOME directory. For other location (e.g. in $PROJECT), you need to specify

where the lost file was with -w argument.

▪ If you do not know the date, you may try entering different dates to flost.

▪ Or you may manually browse the snapshots in /home/.zfs/snapshot folder for $HOME directory or

/anvil/projects/.snapshots folder for $PROJECT directory.

Agenda

6. Helpful tips

Helpful Tools

The following table provides a list of auxiliary tools:

Tools Use

myquota Check the quota of different file systems

flost A utility to recover files from snapshots

showpartitions Display all Slurm partitions and their current usage

myscratch Show the path to your scratch directory

jobinfo

Collates job information from the sstat, sacct and squeue

SLURM commands to give a uniform interface for both

current and historical jobs

sfeatures
Show the list of available constraint feature names for

different node types.

myproject print the location of my project directory

mybalance Check the allocation usage of your project team

The Anvil cluster provides a list of useful auxiliary tools:

www.rcac.purdue.edu/anvil

Contact Us

For user support please submit a ticket at Help Desk, by selecting the appropriate Anvil resource to have it
routed to us.

https://portal.xsede.org/help-desk

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82

